Problema 1. Considera un polinomio
$f(x)=x^{2012}+a_{2011}x^{2011}+...+a_1x+a_0.$
Albert Einstein y Homero Simpson juegan el siguiente juego. En su turno, eligen uno de los coeficientes $a_0,a_1,...,a_{2011}$ y le asignan un valor real. Albert juega primero. Una vez que se ha asignado un valor a un coeficiente, este no puede ser cambiado. El juego termina cuando se haya asignado valor a todos los coeficientes.
La meta de Homero es lograr que $f(x)$ sea divisible entre un polinomio fijo $m(x)$, mientras que Albert debe evitar esto.
$(a)$ ¿Quién de los dos tiene estrategia ganadora si $m(x)=x-2012$?
$(b)$ ¿Quién de los dos tiene estrategia ganadora si $m(x)=x^2+1$?
Problema 2. Se define la sucesión $(a_n)$ recursivamente como $a_0=1, a_1=\frac{1}{2}$ y
$a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}$ para $n\geq 1.$
Demuestra que la serie $\sum_{k=0}^\infty \frac{a_{k+1}}{a_k}$ converge y determina su valor.
Problema 3. ¿Es finito o infinito el conjunto de enteros positivos $n$ tales que $n!+1$ divide a $(2012n)!$?
Problema 4. Sea $n\geq 2$ un entero. Encuentra todos los números reales $a$ para los cuales existen reales $x_1,x_2,...,x_n$ que cumplen
$x_1(1-x_2)=x_2(1-x_3)=...=x_{n-1}(1-x_n)=x_n(1-x_1)=a.$
Problema 5. Sea $c\geq 1$ un número real. Sea $G$ un grupo abeliano y $A\subset G$ un conjunto finito que satisface $|A+A|\leq c|A|$. Demuestra que para todo entero positivo $k$, $|kA|\leq c^k|A|$, en donde $2A=A+A$, $3A=A+A+A$ y así sucesivamente.
No hay comentarios:
Publicar un comentario